



Thank you for purchasing 「SIDC SIA」 series.
Please read this manual thoroughly before operating the servo system.

ver.080603E

## NAMES & FUNCTION



## WIRING

### Wiring



voltage contain in the driver, please DO NOT touch the **TB** terminal( $\mathbf{R} \cdot \mathbf{S} \cdot \mathbf{T}$  and  $\mathbf{U} \cdot \mathbf{V} \cdot \mathbf{W}$ ) and encoder cable for safe. Please wait until the LED put out, user can touch the terminal button.

## **Connect the Power and the Motor to Driver (TB)**



#### Notices

- 1) Please confirm the power line is AC 220V.
- 2) If user connect the signal-phase AC220V, please connect the power lines to **R** \ S terminal buttons and keep **T** terminal button empty.
- 3) Please confirm the motor cable color and  $\mathbf{U} \cdot \mathbf{V} \cdot \mathbf{W}$  terminal buttons.

## **Terminal Button(TB)**

| Name                        | Symbol | Description                                                            |  |
|-----------------------------|--------|------------------------------------------------------------------------|--|
|                             | R      |                                                                        |  |
| Main circuit power          | S      | Connect to power supply $(1 \text{ phase or three phase } AC220+15\%)$ |  |
| suppry                      | Т      | (1-phase of three-phase AC220±15%)                                     |  |
|                             | U      | Connect the red motor cable                                            |  |
| Servo motor power           | V      | Connect the white motor cable                                          |  |
|                             | W      | Connect the black motor cable                                          |  |
| The earth terminal of motor | FG     | Connect the green motor cable                                          |  |
| The earth terminal of       | FG     | Connect to the earth terminal of the servo motor and to the            |  |
| driver                      | FG     | protective earth (PE) of the control box to perform grounding.         |  |

### **COM (for communication)**



| NO.   | Name | Direction  | Description         |
|-------|------|------------|---------------------|
| Pin 1 | CD   |            |                     |
| Pin 2 | TXD  | SIDC650→PC | Transmit            |
| Pin 3 | RXD  | PC→SIDC650 | Receive             |
| Pin 4 | DSR  |            | Data                |
| Pin 5 | GND  |            | Ground              |
| Pin 6 | DTR  |            | Data Terminal Ready |
| Pin 7 | CTS  |            | Clear To Send       |
| Pin 8 | RTS  |            | Request To Send     |
| Pin 9 | RI   |            |                     |

• The setting of COM port:

Baud Rate: 9600

Data Bits : 8 Check: None

Stop Bits: 1 Flow Control: Hardware

## **CONNECTOR**

### **CN1** Connector (for controller)

)

| +12 V OUT 1                   |                                                                                   |
|-------------------------------|-----------------------------------------------------------------------------------|
| VCMD 2                        | $\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ |
| SVOFF3                        | $\tilde{O}$                                                                       |
| <u>CWHC</u> 4<br>HORG 5       | $\left \begin{array}{c} 0\\ 0\\ 0\\ \end{array}\right $                           |
|                               | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right $                      |
| HOME 7<br>EXTV + 8            |                                                                                   |
| O                             |                                                                                   |
| <u> </u>                      | $\tilde{O}$                                                                       |
| <u>READY- 11</u><br>ALARM- 12 |                                                                                   |
| BREAK - 13                    | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right $                      |
| <u>POSOK- 1</u> 4             |                                                                                   |
| <u></u>                       | $\left \begin{array}{c} 0\\ 0\\ 0\\ \end{array}\right $                           |
| <u> </u>                      | $\mathbf{O}$                                                                      |
| <u>PB-18</u><br>P7-19         |                                                                                   |
|                               |                                                                                   |
|                               |                                                                                   |

| 2 <u>0</u> | AG       |
|------------|----------|
| 2 <u>1</u> | -12V OUT |
| 2 <u>2</u> | EMC      |
| 2 <u>3</u> | CCWHC    |
| 2 <u>4</u> | RESET    |
| 2 <u>5</u> | JOG -    |
| 2 <u>6</u> | HALT     |
| 2 <u>7</u> | PLS+     |
| 2 <u>8</u> | DIR+     |
| 2 <u>9</u> | READY    |
| 3 <u>0</u> | ALARM    |
| 3 <u>1</u> | BREAK    |
| 3 <u>2</u> | POSOK    |
| 3 <u>3</u> | OUT4 +   |
| 3 <u>4</u> | PHZOUT   |
| 3 <u>5</u> | PA+      |
| 3 <u>6</u> | PB+      |
| 3 <u>7</u> | PZ+      |
|            |          |
|            |          |
|            |          |

For each operation mode, please refer to the wiring between controller and CN1. (DG pin is the negative terminal of external power supply)

#### I/O Type

Please refer to I/O type at P.16

#### Suitable Mode

The column of suitable mode shows the applicative rage for control method. The meaning for each word please refer to Parameter PN01 (**MD**).

- 0 : Position Control Mode
- 1 : Position Control Mode with Buffer
- 2: Velocity Control Mode
- 3 : Voltage Control Mode
- 4 : Torque Control Mode
- 5: Hyper Terminal Control Mode
- A: All Control Mode

| Pin      | Name                                     | Symbol           | I/O       | Suitable                 |  |  |  |  |
|----------|------------------------------------------|------------------|-----------|--------------------------|--|--|--|--|
| 1        | + <b>12</b> V                            | 1217             | Туре      | Mode                     |  |  |  |  |
| 1        | ±12 V                                    | +12V             |           |                          |  |  |  |  |
| 21       | Output                                   | -12V             |           |                          |  |  |  |  |
| Supp     | Supply ±12VDC/10mA MAX output voltage.   |                  |           |                          |  |  |  |  |
| 2        | Speed/Torq                               | VCMD             | AT        | 2.2                      |  |  |  |  |
| 20       | ue Input                                 | AG               | AI        | 2,3                      |  |  |  |  |
| The      | speed and                                | d torque         | comm      | and can                  |  |  |  |  |
| input    | <b>VCMD</b> pin,                         | and <u>AG</u> is | the anal  | og ground.               |  |  |  |  |
| The I    | Max torque a                             | nd speed i       | s corres  | ponding to               |  |  |  |  |
| ±10V     | Υ <u>VCMD</u> inpι                       | it voltage.      |           |                          |  |  |  |  |
|          | Servo off                                | SVOFF            | SI        | Α                        |  |  |  |  |
|          | When open-circuit this pin and DG pin,   |                  |           |                          |  |  |  |  |
| 3        | driver will servo on. When short-circuit |                  |           |                          |  |  |  |  |
|          | this pin and                             | DG pin, di       | river wil | l servo off.             |  |  |  |  |
|          | (Please refer                            | to <b>PN04</b> p | oaramete  | r)                       |  |  |  |  |
|          | Emergenc<br>y Stop                       | EMC              | SI        | А                        |  |  |  |  |
| 22       | When short                               | -circuit thi     | s pin an  | d <u>DG</u> pin,         |  |  |  |  |
| <u> </u> | driver wi                                | ill imme         | ediately  | execute                  |  |  |  |  |
|          | emergency                                | stop and         | servo o   | ff. (Please              |  |  |  |  |
|          | refer to PN0                             | 4 paramete       | er)       |                          |  |  |  |  |
|          | <b>CW Drive</b>                          | CWHC             | ST        | ٨                        |  |  |  |  |
|          | Inhibit                                  | CWIIC            | 51        | A                        |  |  |  |  |
| 1        | When short-                              | circuit this     | pin and   | <u><b>DG</b></u> pin, it |  |  |  |  |
| -        | means th                                 | at trave         | l-exceed  | ing has                  |  |  |  |  |
|          | happened.                                | (Please          | refer     | to <b>PN05</b>           |  |  |  |  |
|          | parameter)                               |                  |           |                          |  |  |  |  |

## CONNECTOR

|                 | CCW<br>Drive<br>Inhibit                              | ССЖНС                                            | SI                                    | A                             | SID<br>(Ple                                                                               | C650 case refe                  | an ac<br>r to <b>P</b>                | ccept three cc<br><b>N02</b> ):             | ommand                       | types.            |
|-----------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|---------------------------------------------|------------------------------|-------------------|
| 23              | When short-<br>means th<br>happened.<br>parameter)   | -circuit this pi<br>at travel-e<br>(Please re    | n and <u>DG</u><br>xceeding<br>fer to | pin, it<br>has<br><b>PN05</b> | Com                                                                                       | ımand<br>Гуре                   | PLS +                                 | Pin St<br>Forward                           | atus<br>Back                 | ward              |
|                 | Home<br>Signal                                       | HORG                                             | SI                                    | 1,5                           | Pul                                                                                       | se+Dir                          | DIR +                                 |                                             |                              |                   |
| 5               | When short-<br>means that<br>inputted.<br>parameter) | -circuit this pi<br>mechanical h<br>(Please ref  | n and <u>DG</u><br>tome signer to     | pin, it<br>nal has<br>PN03    | CW                                                                                        | //CCW                           | CW +<br>CW -<br>CCW +<br>CCW -<br>A + |                                             |                              |                   |
|                 | Reset                                                | RESET                                            | SI                                    | Α                             | AB                                                                                        | Phase                           | A – –                                 |                                             |                              |                   |
| 24              | When short-<br>will reset t<br>also remove           | -circuit this pi<br>he driver. (R<br>the alarm.) | n and <u>DG</u><br>.eset driv         | <u>i</u> pin, it<br>ver can   | 29                                                                                        | Serv                            | B +<br>B -                            |                                             | ))                           |                   |
|                 | JOG<br>Forward                                       | JOG+                                             | SI                                    | 1                             | 11<br>After                                                                               | Read                            | ly<br>. on                            | <b>READY</b>                                | <b>SO</b> withou             | A<br>t anv        |
| 6               | When short<br>motor will j                           | -circuit this p<br>og forward.                   | in and <u>D</u>                       | <u><b>G</b></u> pin,          | alarms, <u><b>READY</b></u> signal will be ON. (Please<br>refer to <b>PN07</b> parameter) |                                 |                                       |                                             | Please                       |                   |
|                 | JOG<br>Backward                                      | JOG-                                             | SI                                    | 1                             | 30<br>12                                                                                  | Alar                            | m                                     | ALARM                                       | SO                           | Α                 |
| 25              | When short<br>motor will j                           | -circuit this p<br>og backward.                  | in and <u>D</u>                       | <b>G</b> pin,                 | If an be O                                                                                | y alarm<br>N. (Pleas            | occu<br>se ref                        | urring, <u>ALAR</u><br>er to <b>PN07</b> pa | <u>RM</u> signa<br>(rameter) | al will           |
|                 | Homing                                               | HOME                                             | SI                                    |                               | 31<br>13                                                                                  | Holdi<br>Brea                   | ng<br>k                               | BREAK                                       | SO                           | А                 |
| 7               | $(ON \rightarrow OFF)$<br>mechanical                 | -circuit this p<br>), motor will r<br>home.      | otate back                            | to the                        | When ON.                                                                                  | n servo<br>This pin             | off, t<br>can                         | he <u>BREAK</u> p<br>be used to co          | pin will<br>ontrol the       | output<br>e relay |
|                 | Pulse                                                |                                                  |                                       |                               | of n                                                                                      | nagnetic                        | bre                                   | ak.(Please re                               | efer to                      | PN06              |
|                 | Input                                                | HALT                                             | SI                                    | 1                             | parar                                                                                     | neter)                          |                                       |                                             |                              |                   |
| 26              | Inhibit                                              | airavit this r                                   | in and <b>F</b>                       |                               | <u>32</u><br>14                                                                           | In<br>Positi                    | on                                    | POSOK                                       | SO                           | 0,1               |
|                 | (ON→OFF)                                             | ), the input                                     | pulses v                              | vill be                       | Pleas                                                                                     | e refer to                      | o <b>PN</b>                           | 18 parameter                                |                              |                   |
|                 | External                                             |                                                  |                                       |                               | 33<br>15                                                                                  | Outpu                           | ıt 4                                  | OUT4                                        | SO                           | Α                 |
|                 | +24V                                                 | +24V                                             |                                       | Α                             | This                                                                                      | output p                        | in is i                               | reserved by m                               | anufacto                     | ory.              |
| 8               | <b>Power</b><br>User need to                         | o supply exter                                   | nal +24V                              | power                         | 34                                                                                        | Z-pha                           | nse                                   | PHZOUT                                      | SO                           | A                 |
| 27              | for I/O.                                             |                                                  |                                       |                               | 16<br>The                                                                                 | PHZOI                           |                                       | nin signal is                               | s the s                      | ame as            |
| <u>2</u> /<br>9 | Input                                                | PLS+<br>PLS-                                     |                                       | 0.1                           | the <b>P</b>                                                                              | $\underline{\mathbf{Z}}$ + sign | al, ar                                | nd the type of                              | this pin                     | is open           |
| 28              | Direction                                            | DIR+                                             | PI                                    | 0,1                           | colle                                                                                     | ctor.                           |                                       | - 1                                         | ÷                            | -                 |
| 10              | Input                                                | DIR-                                             |                                       |                               |                                                                                           |                                 |                                       |                                             |                              |                   |

## CONNECTOR

| 35                                         | Encoder A-                                    | Phase     | F    | ?A     |      |         |         |
|--------------------------------------------|-----------------------------------------------|-----------|------|--------|------|---------|---------|
| 17                                         | Output                                        |           | I    | A      |      |         |         |
| 36                                         | Encoder B-Phase                               |           | F    | B      | РО   |         | Α       |
| 18                                         | Output                                        |           | F    | B      |      |         |         |
| 37                                         | Encoder Z-                                    | Phase     | 1    | PZ     |      |         |         |
| 19                                         | Output                                        |           | I    | PZ     |      |         |         |
| Outp                                       | ut the encode                                 | er signal | l wł | nich ł | be i | inpu    | tted to |
| drive                                      | driver. The A-phase leads B-phase 90 degrees, |           |      |        |      | egrees, |         |
| when view from the shaft end. The types of |                                               |           |      |        |      |         |         |
| these pins are line-drive.                 |                                               |           |      |        |      |         |         |
|                                            | Shield                                        | FG        |      |        |      |         | Α       |

## **CN2 Connector (for encoder)**



This chapter introduces the operation mode, various I/0 ports in SIDC650, and wiring so that the user can connect the controller to control the servo drivers.

## How to Operate SIDC-SIA

User can follow the flow chart to set the driver:



1) Users can select one operation mode from the five ones in SIDC according to different application. (By setting system parameter **MD** (**PN01**), user can decide which operation mode to be applied. Refer to P.27)

2) Wire the motor, power supply, and the driver. According to the selected operation mode, connect the wiring between controller and driver.

3) After wiring, please use the default parameters and operation mode to rotate the motor first. If alarm occurs or doesn't perform well, please adjust the parameter until it meets your requirements. (Please be sure to adjust your driver according to the description of P.43 so that it can achieve its performance.)

4) Please operate carefully.

After complete the installation, the driver can work well.

### **OPERATION MODE**

### **Operation Mode Description**

There are five operation modes in SIDC 650 in total. The differences of the five modes are described thoroughly as follows:

(By setting the system parameter **MD** (**PN01**), user can decide which operation mode to be applied. Refer to P.28)

#### Position Control Mode (MD=0)

In this mode, the rotations of motors are controlled directly by input pulses. As long as the driver receives pulses, the motor will instantly respond to it. Not only the position, but also velocity and acceleration are controlled by the input pulses from controller. (Motor is not controlled by parameter **VM** and **VA** in driver).

In this mode, whenever the driver receives pulse, the distance of rotation is decided by electrical gear ratio parameter SC1 and SC2. There are three ways for pulse input, set by PM parameter. (For the definition of SC1 and SC2, please refer to P.35 and P.29 for parameter PM).

#### Position Control Mode with Buffer (MD=1)

This mode is almost the same with the previous one. The distance of the rotation is decided by **SC1** and **SC2** parameter. But the input pulses only decides the final position. The velocity and acceleration of motor rotation is controlled by **VM** and **VA** parameter. (For the definition of **VM** and **VA**, please refer to P.34).

#### Velocity Control Mode (MD=2)

In this mode, the velocity and direction of motors are controlled by CN1 analog input port (<u>VCMD</u> and <u>AG</u> pin, please refer to P.5). Positive voltage, rotate forward; negative voltage, rotate backward. The higher the voltage, the faster the motor rotates. The relation between voltage and rotation velocity is determined by VM parameter. When the voltage of the input port is +/-10Volt, the corresponding rotation velocity of the motor is +/-VM. Besides, the proportion between VM and analog input voltage is set by TSC (the definition of TSC is in P.37). And the acceleration of the motor is limited by VA parameter).

In this mode, the velocity is controlled by close loop, and very stable. In other words, it will not be affect by the loading.

#### Voltage Control Mode (MD=3)

In this mode, the output voltage applied in motor is determined by the voltage of analog input port (<u>VCMD</u> and <u>AG</u>, please see P.5). The SIDC works as an amplifier. The higher the analog input is, the higher the output voltage will be. The proportion between the two is determined by TSC parameter (For the definition of TSC, please refer to P.37). Generally speaking, the rotation velocity of motor is proportioned to input voltage. But this mode is not like close loop control just like velocity control mode. Therefore, it is in fact influenced by loading, and is not always proportioned to input voltage.

In this mode, the current and the output torque are not directly controlled. The output current will increase along with the increase of loading. If it overloads, the actual output current and voltage will be limited by the rated current and the rated voltage of SIDC 650.

#### **Torque Control Mode (MD=4)**

Normally, the torque of motors is proportioned to current, so this mode is also named current control mode. In this mode, the torque and direction of torque can be controlled and commanded by the voltage of analog input port (<u>VCMD</u> and <u>AG</u> pin, please see P.5). If you input positive voltage, it will output positive torque; if you input negative voltage, it will output negative torque. The higher the voltage inputs, the larger the torque of the motor outputs. The proportion of analog input voltage and output torque is decided by parameter **TSC** (please see the definition of **TSC** in P.37).

In this mode, the speed of motor rotation is not directly controlled, but parameter VM can control the speed limit (the definition of VM is in P.34). Please be careful with the increasing rotation speed when there is no loading applied on motor.

#### Hyper Terminal Control Mode (MD=5)

In this mode, all motor actions can be commanded by RS232 communication port in the front panel. Please see  $\lceil$  SIDC 650/850 Terminal Command  $\rfloor$  in P. 49.

## **Position Pulse Control Mode** (Line Drive \ Mode MD=0)

- Refer P.9 for <sup>¬</sup>Operation Mode <sub>→</sub>
- Refer P.16 for Line Drive I/O Circuit



## **Position Pulse Control Mode**

## (Open Collector Mode MD=0)

• Refer P.16 for Open Collector I/O Circuit



### Position Pulse Control Mode

### (Line Drive Mode MD=1)

### (with Buffer and External Analog Input)



## Position Pulse Control Mode

### (Open Collector Mode MD=1)

### (with Buffer and External Analog Input)



## Velocity/Voltage/Torque Control Mode (Mode MD=2 \ 3 \ 4)



This page describes the I/O circuit of CN1.

### **Input Circuit**

#### SI (Serial Signal Input)

Connect the external switches, relay, and open collector of transistor.



#### PI (Pulse Signal Input)

There are two interfaces of input position pulses. 1 <u>Line Drive Input</u>

Recommend method for less noise.



#### 2 Open Collector Input

Need to add the extra DC power supply and select resistance R for the current limit.



#### AI (Analog Signal Input)

User could use the external power supply or the 12V.output of CN1. The range of analog input is  $-10V \sim +10V$ .



## **Output Circuit**

### SO (Serial Signal Output)

The maximum output current is 50mA •



Inductive load must add inverse diode

#### PO (Pulse Signal Output)

This is differential output of encoder signal.



## **OPERATE THE FRONT PANEL**

In order to make good use of servo systems, the driver contains many parameters in need of adjustment; therefore, please be familiar with the operation of the front panel on the driver so as to monitor and set the parameter (the user doesn't need to connect the driver with computer.)

## **The Front Panel and Switch Keys**



| Symbols for Keys | Names of Keys  | Functions of Keys                                  |
|------------------|----------------|----------------------------------------------------|
| ENTER            | Select & Input | Selecting or confirm the adjusting parameter.      |
|                  | Up             | Add 1 to the being adjusted parameter.             |
| •                | Shift Cursor   | Change the cursor position when editing.           |
| ▼                | Down           | Sub 1 from the being adjusted parameter.           |
| QUIT             | Cancel & Exit  | Cancel the editing and return to the previous menu |

### **Operate the Front Panel**

The front panel of SIDC 650 offers the following operations:

you can press  $\blacktriangle \lor$  to select the operation you need. After selecting the required functions, press **ENTER** and you can get into the operation; in contrast, you can return to previous operation after you press **QUIT**.

#### [Status Display] & [Monitor Setting]

The setting of the DN parameter in **[Monitor Setting]** decides what the being monitored parameter is (see P35, "SIDC 650 Monitoring Option List"). Under **[Status Display]**, the 7 segment LED displays the monitored option.

#### [Parameter Setting]

Under **[Parameter Setting]**, user can adjust the system parameters (see P.26, "System Parameters (PN) List of SIDC 650").

#### [Function Operate]

Under **[Function Operate]**, user can execute some functions by using the front panel (see P35, "**System Parameters (PN) List of SIDC 650**").

## **OPERATE THE FRONT PANEL**



## **FUNCTION OPERATE**

User can use **[Function Operate]** from front panel to adjust and test the servo system. Please read the following details for the specific function.

### How to Select the Function

• After the front panel displays FN ( **[Function Operate]**) and you press **ENTER**, you can select the functions which you want to operate by using  $\nabla \blacktriangle$  buttons. SIDC 650 has 11 functions in total, ranging from "00" to"10". After select the target function, you can press **ENTER** to start operating the selected function. In contrast, after you press **QUIT** you can give up operation and go back to previous display.



## SIDC 650 Function (FN) List

| Fn | Function Displays Description |                          |                                                                                                                    | Notes |  |  |  |
|----|-------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| 00 |                               | reserv                   | ved by manufactory                                                                                                 |       |  |  |  |
| 01 |                               | reserv                   | ved by manufactory                                                                                                 |       |  |  |  |
| 02 | JOG                           |                          | JOG Forward (press UP key) or JOG<br>Backward (press DOWN key) with<br>the speed set by <b>VJ</b> ( <b>PN14</b> ). |       |  |  |  |
| 03 | Firmware<br>Version           | 06628                    | Display the version of Firmware.                                                                                   |       |  |  |  |
| 04 | RESET<br>SYSTEM               | rESEL                    | Reset the driver. This function is the same as the Pin24 <b><u>RESET</u></b> of CN1.                               |       |  |  |  |
| 05 | reserved by manufacturer      |                          |                                                                                                                    |       |  |  |  |
| 06 |                               | reserved by manufacturer |                                                                                                                    |       |  |  |  |

| 07 |                             | reserv | red by manufactory                                                                             |                       |
|----|-----------------------------|--------|------------------------------------------------------------------------------------------------|-----------------------|
| 08 | Calibrate<br>Current Sensor |        | After executing <b>FN09</b> , please<br>execute this operation to calibrate<br>current sensor. | Execute<br>FN10,first |
| 09 | Initialize<br>Parameters    |        | Initialize the parameters.(restore to default value from factory.)                             | Execute<br>FN10,first |
| 10 | Lock / Unlock<br>Function   | Uoloc  | Before executing <b>FN08</b> • <b>FN09</b> , user needs to execute "UNLOCK".                   |                       |
| 11 | Motor Type                  |        | Display the motor type                                                                         |                       |

## **How to Operate Function**

### JOG (FN02)

• The speed of jog is decided by parameter VJ (PN14) and the acceleration is decided by parameter VA (PN11).



### [Firmware Version] (FN03)

• This function just displays the firmware version of the driver.



## **FUNCTION OPERATE**

#### **[RESET SYSTEM]** (FN04)

- Reset the servo driver is like as soft-restart.
- User can reset the servo driver to clear the alarm.



[Calibrate Current Sensor] & [Initialize Parameter] (FN08 > FN09)

• **[Initialize Parameter]** will restore all the parameter to the default value from manufactory.

• **[Calibrate Current Sensor]** will calibrate the current sensors built in driver. By calibrate the current sensors; driver could drive the motor well. This is the function that user need to execute first after executing the function **[Initialize Parameter]**.

• Function FN10 exists for avoiding the mistake that execute this two function [Calibrate Current Sensor] & [Initialize Parameter] carelessly.



#### 【Lock/Unlock】 (FN10)

• User can use this function to lock or unlock the function **[Calibrate Current Sensor]** and **[Initialize Parameter]**. If the driver is in "Lock" status, user can't execute function **FN08** and **FN09**.



### [Motor Type] (FN11)

• User can confirm which kind of motor is suitable for this driver.

| Display | Motor Type   |
|---------|--------------|
| 2110    | SIA-351000A  |
| 2150    | SIA-351000B  |
| 2160    | SIA-3510000C |
| 2210    | SIA-551000A  |
| 2310    | SIA-751000A  |
| 3250    | SIA-121000B  |
| 3260    | SIA-121000C  |

User can use DNxx **[Monitor Setting]** to monitor the status of driver. This function also can help user to tune the driver.

## How to Monitor the Target and Save Monitor Option

• After the front panel displays DN ( **[Monitor Setting]**) and you press **ENTER**, you can select the options which you want to monitor by pressing  $\mathbf{\nabla} \mathbf{\Delta}$  buttons. SIDC 650 has 17 options in total, ranging from "00" to"16". After select the target options, you can press **ENTER** to setting the monitor target and press **ENTER** again to save setting. In contrast, after you press **QUIT** you can give up operation and go back to previous display.



## SIDC 650 Monitor Option (DN) List

| DN | Target                                                                                       | Unit      |  |
|----|----------------------------------------------------------------------------------------------|-----------|--|
| 00 | Display nothing, 7-segments just shows"n".                                                   |           |  |
| 01 | Rotational Speed (right now)                                                                 |           |  |
|    | (this is the average value in 0.1 sec)                                                       |           |  |
| 02 | The differential pulses between the input pulse and the feedback pulses                      | pulse     |  |
|    | from encoder.                                                                                | P         |  |
|    | The Max. of the differential pulses (the monitor target of DN02)                             |           |  |
| 03 | (If this value is larger than system parameter <b>EL</b> , the alarm " <b>Follow Error</b> " | pulse     |  |
|    | will occur.)                                                                                 |           |  |
| 04 | Input pulses                                                                                 | pulse     |  |
| 05 | The feedback pulses from encoder                                                             | pulse     |  |
| 06 | Output Current (right now)                                                                   | 0.01 A    |  |
| 00 | For example: 180 means output current 1.8A                                                   | 0.01/1    |  |
| 07 | The Max. Output Current                                                                      | 0.01A     |  |
| 08 | Output Torque (right now)                                                                    | 0.1ka*am  |  |
| 08 | For example: 109 means output torque 10.9 kg*cm                                              | 0.1kg Chi |  |
| 09 | The Max. Output Torque                                                                       | 0.1kg*cm  |  |
| 10 | Power (right now)                                                                            | W         |  |
| 11 | The Max. of Power                                                                            | W         |  |
| 12 | The Analog Input Voltage in <u>VCMD</u>                                                      | V         |  |
| 13 | Input Pin Status (Display in HEX Value)                                                      |           |  |
| 14 | Output Pin Status (Display in HEX Value)                                                     |           |  |
| 15 | UVW Output Monitor                                                                           |           |  |
| 16 | ABZ-Phase Monitor                                                                            |           |  |

\* Press **QUIT** will update the max. value.

### How to Read the I/O status

The I/O status display in HEX values.



## **MONITOR SETTING**

### SIDC 650 I/O Map

| NO.  | I/O Name | CN1 pin No. |
|------|----------|-------------|
| IN0  | SVOFF    | 3           |
| IN1  | EMC      | 22          |
| IN2  | СѠНС     | 4           |
| IN3  | ССѠНС    | 23          |
| IN4  | HORG     | 5           |
| IN5  | RESET    | 24          |
| IN6  | JOG +    | 6           |
| IN7  | JOG -    | 25          |
| IN8  | HOME     | 7           |
| IN9  | HALT     | 26          |
| OUT0 | READY    | 11 \ 29     |
| OUT1 | ALARM    | 12 \ 30     |
| OUT2 | BREAK    | 13 \ 31     |
| OUT3 | POSOK    | 14 \ 32     |
| OUT4 | OUT4     | 15 • 33     |
| OUT5 | PHZOUT   | 16 \ 34     |

Example 1:

when the 7-segments displays "H0013" at setting DN=13, it means that there are input from IN0 IN1 · IN4.

Example 2:

when the 7-segments displays "H0023" at setting DN=14, it means that there are output from  $OUT0 \circ OUT1 \circ OUT5$ .

The operation mode and performance of servo driver are decided by the setting of PN parameters which is called the system parameters. Please refer to "System Parameter (PN) List of SIDC 650" in P.28 for more detailed content.

### How to Select the PN Parameters

• After the front panel displays PN (**[Parameter Setting]**) and you press **ENTER**, you can select the parameter which you want to adjust by pressing  $\mathbf{\nabla} \mathbf{\Delta}$  buttons. SIDC 650 has 40 parameters in total, ranging from "00" to"39". After select the target parameter, you can press **ENTER** to set the parameter. In contrast, after you press **QUIT** you can give up adjusting parameters and go back to previous display.



### How to Set and Save the PN Parameters

• Please refer to following drawing:



\* "Complete Temporarily Setting" means the new value of the selected parameter has been accepted by the driver and becomes effective instantly. But it is still not saved in EEPROM. If you turn off the power in this condition, the parameter will restore the older one.

\* After the user permanently saves the new parameter, the new value will be saved into EEPROM. Even the user turns off the power and restart the driver, the newly-set value will not restore the older one.

## System Parameters (PN) List of SIDC 650



#### Suitable Mode

The column of suitable mode shows the applicative rage for control method. The meaning for each word please refer to Parameter **PN01** (**MD**).

X The value of [ ] is the default value.

X The value in this table is suitable for SIDC650 driver & SIA-551 motor.

| No.    | Name                   |          |             | Range [Default]                     | Suita   | ble Mode |
|--------|------------------------|----------|-------------|-------------------------------------|---------|----------|
| PNOO   | DN                     |          |             | 0~16 【1】                            |         |          |
| 1 1100 | Monitor Opt            | tion Sel | ect (corres | ponding to "Monitor Setting") refer | to P.23 |          |
|        | MD                     |          |             | 0~5 [1]                             |         |          |
|        | Operation M            | Iode Se  | lect(Please | refer to "Operation Mode" in P.8    |         |          |
|        |                        | 0        | Position C  | ontrol Mode                         |         |          |
| DNI01  | 1Position C2Velocity C |          |             | ontrol Mode with Buffer             |         |          |
| PINUI  |                        |          |             | ontrol Mode(Closed Loop)            |         |          |
|        |                        | 3        | Voltage Co  | ontrol Mode(Open Loop)              |         |          |
|        |                        | 4        | Torque Co   | ntrol Mode                          |         |          |
|        |                        | 5        | Hyper Terr  | minal Control Mode                  |         |          |
| PN02   |                        |          |             | Command Setting                     |         |          |
| 11102  |                        | DI       |             | H000 【0】                            |         | Α        |

|       | B                | Bit 0                             |                                                                                 |                                                                                                  |                                         |                                                                                                  |                                                              |  |
|-------|------------------|-----------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
|       |                  | The Rotational Direction of Motor |                                                                                 |                                                                                                  |                                         |                                                                                                  |                                                              |  |
|       |                  |                                   |                                                                                 | 0                                                                                                | Clockwise rot<br>positive comm          | ate (viewed from mounting side) when nand                                                        | en input                                                     |  |
|       |                  |                                   |                                                                                 | 1                                                                                                | Counter Clock<br>when input po          | wise rotate (viewed from mounting solutions)                                                     | side)                                                        |  |
|       | PM H00 [0] 0 0,1 |                                   |                                                                                 |                                                                                                  |                                         |                                                                                                  | 0,1                                                          |  |
|       | Bit 1            |                                   |                                                                                 |                                                                                                  |                                         |                                                                                                  |                                                              |  |
|       |                  |                                   |                                                                                 | Pos                                                                                              | ition Comman                            | <b>d</b> (refer to P.6)                                                                          |                                                              |  |
|       |                  |                                   |                                                                                 | 0                                                                                                | PLS/DIR (puls                           | se + direction)                                                                                  |                                                              |  |
|       |                  |                                   | _                                                                               | 1                                                                                                | CW/CCW con                              | nmand                                                                                            |                                                              |  |
|       |                  |                                   |                                                                                 | 2                                                                                                | A/B phase con                           | nmand                                                                                            |                                                              |  |
|       |                  |                                   |                                                                                 |                                                                                                  |                                         | Н [0] 000                                                                                        | 5                                                            |  |
|       | Bi               | it 3                              |                                                                                 |                                                                                                  |                                         |                                                                                                  |                                                              |  |
|       |                  |                                   | _                                                                               | Exe                                                                                              | ecute Program                           | Automatically                                                                                    |                                                              |  |
|       |                  |                                   | -                                                                               | 0                                                                                                | Disable Auto-                           | Start                                                                                            |                                                              |  |
|       |                  | (m. 1)                            | L                                                                               | 1                                                                                                | Enable Auto-S                           | Start                                                                                            |                                                              |  |
|       | *                | <u>(111</u>                       | s paran                                                                         | nete                                                                                             | TIS ONLY VALID IN                       | the controller version of SIDC650 0                                                              | it SIDC850.                                                  |  |
|       |                  |                                   |                                                                                 |                                                                                                  | He                                      | oming Setting & Baud Rate                                                                        |                                                              |  |
|       |                  |                                   |                                                                                 | HM                                                                                               | 1                                       | H000 【0】                                                                                         | 1,5                                                          |  |
|       | Bi               | it 0                              |                                                                                 |                                                                                                  |                                         |                                                                                                  |                                                              |  |
|       | -                | Ho                                | me Dir                                                                          | ecti                                                                                             | on                                      |                                                                                                  |                                                              |  |
|       | 0 Shor           |                                   |                                                                                 | cor<br>tion.                                                                                     | nection of <u>HC</u><br>The action of h | <b>DME</b> pin & <b>DG</b> pin, motor will h<br>oming is triggered by <b>shorting <u>CCW</u></b> | ome in <b>backward</b><br>VHC pin & DG pin.                  |  |
|       |                  | 1                                 | Short                                                                           | coi                                                                                              | nnection of HC                          | OME pin & DG pin, motor will                                                                     | home in forward                                              |  |
|       |                  | 1                                 | direct                                                                          | tion.                                                                                            | The action of h                         | oming is triggered by <b>shorting <u>CWF</u></b>                                                 | <u>IC</u> pin & <u>DG</u> pin.                               |  |
| PN03  |                  | 2 Sho                             |                                                                                 | ort connection of <u>HOME</u> pin & <u>DG</u> pin, motor will home in backward                   |                                         |                                                                                                  |                                                              |  |
| 11105 |                  | 2                                 | direct                                                                          | lirection. The action of homing is triggered by <b>shorting <u>HORG</u></b> pin & <u>DG</u> pin. |                                         |                                                                                                  |                                                              |  |
|       |                  | 3                                 | Short connection of <u>HOME</u> pin & <u>DG</u> pin, motor will home in forward |                                                                                                  |                                         |                                                                                                  |                                                              |  |
|       | -                |                                   | direct                                                                          | rection. The action of homing is triggered by <b>shorting <u>HORG</u></b> pin & <u>DG</u> pin.   |                                         |                                                                                                  |                                                              |  |
|       |                  | 4                                 | Short                                                                           | cor<br>tion                                                                                      | nection of <u>HC</u><br>The action of h | <u>DME</u> pin & <u>DG</u> pin, motor will h<br>oming is triggered by <b>opening CCW</b>         | nome in <b>backward</b><br>$\mathbf{HC}$ pin & <b>DC</b> pin |  |
|       |                  |                                   | Short                                                                           | con                                                                                              | nection of <b>HON</b>                   | <b>IE</b> pin & <b>DG</b> pin motor will home i                                                  | n forward direction                                          |  |
|       |                  | 5                                 | The a                                                                           | ctio                                                                                             | n of homing is t                        | riggered by <b>opening <u>CWHC</u></b> pin & <u>I</u>                                            | DG pin.                                                      |  |
|       |                  | 6                                 | Short                                                                           | cor                                                                                              | nection of HC                           | DME pin & DG pin, motor will h                                                                   | nome in <b>backward</b>                                      |  |
|       |                  | 0                                 | direct                                                                          | tion.                                                                                            | The action of h                         | oming is triggered by <b>opening</b> HOR                                                         | <u>G</u> pin & <u>DG</u> pin.                                |  |

|      |                         | BAUD                                                                 | H0 <b>(</b> 0 <b>)</b> 00                                      | 1,5                |  |  |
|------|-------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|--------------------|--|--|
|      | Bit 2                   |                                                                      | -                                                              |                    |  |  |
|      |                         | RS2                                                                  | 32 Baud Rate                                                   |                    |  |  |
|      |                         | 0                                                                    | 9600                                                           |                    |  |  |
|      |                         | 1                                                                    | 19200                                                          |                    |  |  |
|      |                         | 2                                                                    | 38400                                                          |                    |  |  |
|      |                         |                                                                      | Н [0] 000                                                      | 1,5                |  |  |
|      | Bit 3                   |                                                                      |                                                                | ·                  |  |  |
|      |                         | Echo responds to                                                     | ) RS232                                                        |                    |  |  |
|      |                         | 0 Enable Echo                                                        | from terminal                                                  |                    |  |  |
|      |                         | 1 <b>Disable</b> Eche                                                | o from terminal                                                |                    |  |  |
|      | SERVO OFF & EMC Setting |                                                                      |                                                                |                    |  |  |
|      |                         |                                                                      | H010 【1】                                                       | Α                  |  |  |
|      | Bit 0                   |                                                                      |                                                                | ·                  |  |  |
|      | The                     | Setting of <u>SVOFF</u> Pin                                          |                                                                |                    |  |  |
|      | 0                       | The pin of <b>SVOFF</b> is <b>invalid</b> .                          |                                                                |                    |  |  |
|      | 1                       | Short connection of <u>SV</u>                                        | <b><u>OFF</u></b> pin & <u><b>DG</b></u> pin, driver will SERV | O OFF immediately. |  |  |
|      | 3                       | Open connection of <u>SV</u>                                         | <b>DFF</b> pin & <b>DG</b> pin, driver will SERVO              | O OFF immediately. |  |  |
|      |                         |                                                                      | H01 【0】 1                                                      | Α                  |  |  |
|      | Bit 1                   |                                                                      |                                                                |                    |  |  |
|      |                         | Brake Method of                                                      | Servo Off                                                      | -                  |  |  |
|      |                         | When servo                                                           | off, motor will immediately deceleration                       | ate speed.         |  |  |
| PN04 |                         | 0 ( the decelerat                                                    | t down the output ourrent                                      | notor stop,        |  |  |
|      |                         | When serve o                                                         | ff driver will immediately shut down                           | the output         |  |  |
|      |                         | 1 current The m                                                      | notor will <b>free run</b>                                     |                    |  |  |
|      |                         |                                                                      |                                                                |                    |  |  |
|      |                         |                                                                      | H0 [1] 01                                                      | Α                  |  |  |
|      | Bit 2                   |                                                                      | 21                                                             |                    |  |  |
|      |                         | The Setting of <u>EMC</u>                                            | ALADM sis and DDEAK sis suill b                                | - in1i.1           |  |  |
|      |                         | U         Alter <u>EMIC</u> occur           Short         connection | , <u>ALAKINI pin and BKEAK</u> pin Will b                      | will onoblo        |  |  |
|      |                         | 1 EMC(emergency                                                      | ston) and motor will immediately stor                          |                    |  |  |
|      |                         | Open connection                                                      | n of <b>EMC</b> pin & <b>DG</b> pin                            | will <b>enable</b> |  |  |
|      |                         | 3 EMC(emergency                                                      | stop), and motor will immediately stor                         | ).                 |  |  |
|      |                         |                                                                      | Н [0] 101                                                      |                    |  |  |
|      |                         |                                                                      |                                                                | A                  |  |  |



![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_1.jpeg)

|       | D:4 0                                                                |              |              |                                                                              |                                             |                                         |                         |
|-------|----------------------------------------------------------------------|--------------|--------------|------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|-------------------------|
|       | The Selection of Normally Rotation Speed                             |              |              |                                                                              |                                             |                                         |                         |
|       | 0 Us                                                                 | e int        | erna         | <b>I speed</b> setting 1                                                     | PN10 (VM) as rotation speed                 |                                         |                         |
|       | 1 Us                                                                 | e ext        | erna         | l analog VR in                                                               | <b>put</b> as rotation speed. The maximum   | speed is <b>PN19</b>                    | <b>O</b> ( <b>VF</b> ). |
|       |                                                                      |              |              |                                                                              | H00 [0] 0                                   | 1                                       |                         |
|       | Bit 1                                                                |              |              |                                                                              |                                             |                                         |                         |
|       |                                                                      | The          | e Sel        | ection of JOG                                                                | speed                                       |                                         | ]                       |
|       | 0 Use internal spee                                                  |              |              |                                                                              | I setting PN14 (VJ) as manual JOG s         | peed.                                   | 1                       |
|       | Use external anal                                                    |              |              | e external anal                                                              | og VR input as manual JOG speed.            | The maximum                             |                         |
|       | speed is <b>PN19 (VF</b> ).                                          |              |              |                                                                              |                                             |                                         |                         |
|       | <b>%</b> Whe                                                         | n set        | ting ]       | Bit0 or Bit1 be                                                              | 1, driver will convert the voltage dete     | cted from anal                          | og input                |
|       | to speed (RPM) value and write this value to PN10 (VM) or PN14 (VJ). |              |              |                                                                              |                                             |                                         |                         |
|       |                                                                      |              |              | Seque                                                                        | ence of Switching Control Mode              |                                         |                         |
|       |                                                                      |              |              |                                                                              | H000 【0】                                    | Α                                       |                         |
|       | Bit 0                                                                |              |              |                                                                              |                                             |                                         |                         |
| PNIOQ |                                                                      |              | Sec          | uence of Swite                                                               | ching Control Mode                          |                                         |                         |
| 11107 |                                                                      |              | 0            | When changing                                                                | ng the control mode by setting MD (PN01),   |                                         |                         |
|       | driver will SE                                                       |              |              | driver will SE                                                               | CRVO OFF.                                   |                                         |                         |
|       | When changi                                                          |              |              |                                                                              | ng the control mode by setting MD (PN01),   |                                         |                         |
|       |                                                                      |              |              | driver will ST                                                               | ILL SERVO ON.                               | I                                       |                         |
|       |                                                                      |              | VN           | 1                                                                            | 1~5000 【3000】                               | 12345                                   | 5                       |
|       | Rotatio                                                              | onal         | Spee         | d (Unit: RPM)                                                                |                                             |                                         |                         |
|       | • At m                                                               | ode <u>I</u> | PN01         | (MD) = 1 (the                                                                | position control mode with buffer), t       | his parameter                           | VM sets                 |
|       | the max                                                              | ximu         | m sp         | eed of motor. I                                                              | t the rate of input command pulses i        | s higher than                           | VM, the                 |
|       | maxim                                                                | um ro        | otatio       | onal speed will                                                              | be VM. But the final position deter         | mined by inpu                           | it pulses               |
|       | will not                                                             | t be a       |              | ed by the VM. $(MD) = 2$ (the                                                | a valagity gentral mode) or <b>DN01</b>     | $(\mathbf{MD}) = 2$ (the                | voltago                 |
|       | • At II                                                              | mod          | e) th        | $\frac{\mathbf{M} (\mathbf{M} \mathbf{D}) = 2}{\mathbf{M} \mathbf{D}} $ (ii) | M determines the rotational speed in        | $(\mathbf{MD}) = 5$ (the inputting +10) | Voltage                 |
|       | voltage                                                              | For          | exar         | nole if you set                                                              | $\mathbf{VM}$ to 3000 you will get 3000 RPM | when you inn                            | $1000 \text{ m}^{-1}$   |
| PN10  | to analo                                                             | og ini       | but p        | ort and you will                                                             | get -1500 RPM when you input -5V            | when you mp                             | ut +10 v                |
| 11110 | • At m                                                               | node ]       | PN0          | 1 (MD) = 4 (the                                                              | torque control mode), this parameter        | er VM is used                           | to limit                |
|       | the rota                                                             | ationa       | al sp        | eed for safe pro                                                             | otection. In torque control mode, SI        | DC650 will ou                           | tput the                |
|       | constan                                                              | nt tor       | que.         | If the load is re                                                            | emoved from the motor, the rotation         | al speed of mo                          | otor will               |
|       | increas                                                              | e. W         | hen          | the speed is over                                                            | er VM, SIDC650 will decrease the            | output torque                           | to avoid                |
|       | over sp                                                              | eed.         |              |                                                                              |                                             |                                         |                         |
|       | • At m                                                               | ode <u>l</u> | <b>PN0</b> 1 | <u>l (MD) =5</u> (hyp                                                        | per terminal control mode), VM mean         | ns the maximu                           | m speed                 |
|       | of MA                                                                | instr        | uctio        | n and <b>MR</b> instr                                                        | uction.                                     |                                         |                         |
|       | i ≫ The                                                              | rotat        | tion         | speed of mode                                                                | <b>PN01(MD)=0</b> (the position control r   | node) is not co                         | ontrolled               |
|       | by VM                                                                |              |              |                                                                              |                                             |                                         |                         |

|      | * This default value () is diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ferent from set to set.(a set here mean                                                              | s a motor and a driver)       |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------|--|--|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                               |  |  |
|      | VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1~1000 【250】                                                                                         | 125                           |  |  |
|      | $\frac{\sqrt{1}}{4 \operatorname{ccoloration} (\operatorname{Unit}: \mathbf{PPS}^2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1000 250                                                                                           | 1,2,5                         |  |  |
|      | <ul> <li>This parameter decides the main revolution per sec<sup>2</sup>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aximum acceleration and deceleratio                                                                  | n of rotation. The unit       |  |  |
|      | For example:<br>If <u>PN10(VM)</u> =3000 , <u>PN11(VA)</u> =250.<br>The unit of VM in SIDC650 is RPM, 60RPM=1RPS.<br>Therefore, the total time of starting to 3000 RPM from station needs =(VM/60)/VA=0.2                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |                               |  |  |
|      | • The setting of <b>VA</b> is closely related with the torque and load.<br>The formula is $\overline{A = T / Im}$<br>A is angular acceleration, unit: rad/sec <sup>2</sup><br>T is the output torque of motor, unit: Nt*m<br>Im is the total inertia of motor and load, unit: Kg*m <sup>2</sup>                                                                                                                                                                                                                                                                    |                                                                                                      |                               |  |  |
| PN11 | • If mode <u><b>PN01</b> (MD) =1</u> (the position control mode with buffer), VA decides the maximum acceleration of the motor. If the rating of the input pulse is smaller than VA, the motor will follow the input pulse. But if the rating of input pulse is over VA, the motor will follow the command with acceleration of VA. The buffer will save the excessive amount of the input pulse, and release them when the rating of input command becomes small. To sum up, the final steady state of the motor speed and position will not be influenced by VA. |                                                                                                      |                               |  |  |
|      | • If mode <u><b>PN01</b> (MD) =2</u> (the velocity control mode), VA decides the maximum acceleration and deceleration of the motor.                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                               |  |  |
|      | • If mode <u>PN01 (MD) =5</u> (the terminal mode). When you execute the instructions of <b>MA</b> $\cdot$ <b>MR</b> $\cdot$ <b>JGF</b> $\cdot$ <b>JGR</b> $\cdot$ <b>H</b> , <b>VA</b> decides the acceleration and deceleration of the motor.                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                               |  |  |
|      | • In all modes, VA decides the a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • In all modes, <b>VA</b> decides the acceleration of JOG in the front panel.( <u>Execute FN02</u> ) |                               |  |  |
|      | *The acceleration of mode <b>PN</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 (MD) =0,3,4 is not controlled by V                                                                | / <b>A</b> .                  |  |  |
|      | SC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1~9999 [1]                                                                                           | 0,1                           |  |  |
| PN12 | Electric Gear Ratio Numerato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r                                                                                                    |                               |  |  |
|      | • SC1 and SC2 parameter is use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed for position pulse control( <b>MD</b> =0 of                                                       | or <b>MD</b> =1). The unit of |  |  |

|              | motor moving is EC(Encoder Count), corresponding to the resolution of encoder. In                                                                                                                                   |                                                                                                                                         |                                                                    |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
|              | position pulse control mode, SIDC650 will drive motor rotate                                                                                                                                                        |                                                                                                                                         |                                                                    |  |  |  |  |
|              | $\left( \text{input pulses} \times \frac{\text{PN12}}{\text{PN13}} \right)$ EC. For example:                                                                                                                        |                                                                                                                                         |                                                                    |  |  |  |  |
|              | When SIDC650 received 2000 p                                                                                                                                                                                        | ulses, and user sets $SC1=5$ , $SC2=10$                                                                                                 | , the motor will rotate                                            |  |  |  |  |
|              | 2000*5/10=1000 EC.(1000 EC                                                                                                                                                                                          | is 1/10 revolution of 2500 lines                                                                                                        | encoder, because one                                               |  |  |  |  |
|              | revolution of 2500 lines encoder                                                                                                                                                                                    | is 4*2500=10000 EC.)                                                                                                                    |                                                                    |  |  |  |  |
|              | • SC1 and SC2 must be set in po                                                                                                                                                                                     | ositive integral, but SC1+SC2 could                                                                                                     | be set arbitrarily.                                                |  |  |  |  |
|              | For example:                                                                                                                                                                                                        |                                                                                                                                         |                                                                    |  |  |  |  |
|              | User can set SC1=2 and SC2=3                                                                                                                                                                                        | B (SC1÷SC2=0.6666EC). User w                                                                                                            | on't be worried about                                              |  |  |  |  |
|              | the position error , SIDC650 w                                                                                                                                                                                      | ill deal with the error and let the fina                                                                                                | l position error be less                                           |  |  |  |  |
|              | than 1 EC.                                                                                                                                                                                                          |                                                                                                                                         |                                                                    |  |  |  |  |
|              |                                                                                                                                                                                                                     |                                                                                                                                         |                                                                    |  |  |  |  |
|              | • The range of <b>SC1÷SC2</b> is 9999 to 1/9999 •                                                                                                                                                                   |                                                                                                                                         |                                                                    |  |  |  |  |
|              | • We recommend user to use the position pulse control mode with buffer (MD=1), when                                                                                                                                 |                                                                                                                                         |                                                                    |  |  |  |  |
|              | the value of SC1 is much bigger than SC2. Because the bigger electric gear ratio was set,                                                                                                                           |                                                                                                                                         |                                                                    |  |  |  |  |
|              | motor moves more rapidly with per input pulse. But if use MD=1 and tune the parameter                                                                                                                               |                                                                                                                                         |                                                                    |  |  |  |  |
|              | VA, motor will move smoothly.                                                                                                                                                                                       |                                                                                                                                         |                                                                    |  |  |  |  |
|              | <b>SC1</b> and <b>SC2</b> is only valid in 1                                                                                                                                                                        | <b>MD</b> =0 or <b>MD</b> =1.                                                                                                           |                                                                    |  |  |  |  |
|              | *The variation of this parameter                                                                                                                                                                                    | r is valid after driver being reset.                                                                                                    | The variation of this parameter is valid after driver being reset. |  |  |  |  |
|              |                                                                                                                                                                                                                     |                                                                                                                                         |                                                                    |  |  |  |  |
|              | SC2                                                                                                                                                                                                                 | 1~9999【1】                                                                                                                               | 0,1                                                                |  |  |  |  |
| PN13         | SC2 Electric Gear Ratio Denominat                                                                                                                                                                                   | 1~9999 【1】<br>tor                                                                                                                       | 0,1                                                                |  |  |  |  |
| PN13         | SC2<br>Electric Gear Ratio Denominat<br>Please refer to parameter PN12.                                                                                                                                             | 1~9999 【1】<br>tor                                                                                                                       | 0,1                                                                |  |  |  |  |
| PN13         | SC2<br>Electric Gear Ratio Denominat<br>Please refer to parameter PN12.<br>%The variation of this parameter                                                                                                         | 1~9999 【1】<br>tor<br>r is valid after driver being reset.                                                                               | 0,1                                                                |  |  |  |  |
| PN13         | SC2<br>Electric Gear Ratio Denominat<br>Please refer to parameter PN12.<br>**The variation of this parameter<br>VJ                                                                                                  | 1~9999 [1]<br>tor<br>r is valid after driver being reset.<br>1~5000 [3000]                                                              | 0,1<br>A                                                           |  |  |  |  |
| PN13<br>PN14 | SC2<br>Electric Gear Ratio Denominat<br>Please refer to parameter PN12.<br>**The variation of this parameter<br>VJ<br>JOG Speed (Unit : RPM)                                                                        | 1~9999 [1]<br>tor<br>r is valid after driver being reset.<br>1~5000 [3000]                                                              | 0,1<br>A                                                           |  |  |  |  |
| PN13<br>PN14 | SC2<br>Electric Gear Ratio Denominat<br>Please refer to parameter PN12.<br>**The variation of this parameter<br>VJ<br>JOG Speed (Unit : RPM)<br>• VJ is the speed of motor rotati                                   | 1~9999 [1]         tor         r is valid after driver being reset.         1~5000 [3000]         on when user operates the front panel | 0,1<br>A<br>I. (Execute FN02)                                      |  |  |  |  |
| PN13<br>PN14 | SC2<br>Electric Gear Ratio Denominat<br>Please refer to parameter PN12.<br>*The variation of this parameter<br>VJ<br>JOG Speed (Unit : RPM)<br>• VJ is the speed of motor rotati<br>• VJ is also the speed of comma | 1~9999 [1]<br>tor<br>r is valid after driver being reset.<br>1~5000 [3000]<br>on when user operates the front panel<br>nd JGF and JGR.  | 0,1<br>A<br>I. (Execute FN02)                                      |  |  |  |  |

|      | The Zero Offset of Analog Inpu                                                      | ut (Unit: 0.01V)                         |                                        |  |  |  |  |
|------|-------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|--|--|--|--|
|      | • The range of analog input is ±1                                                   | 10V, and 0V is the zero point. Some      | etime the zero point of                |  |  |  |  |
|      | analog input is not the same z                                                      | ero point of driver, so user could       | use this parameter to                  |  |  |  |  |
|      | calibrate the zero point of driver.                                                 |                                          |                                        |  |  |  |  |
|      | • The method of calibration:                                                        |                                          |                                        |  |  |  |  |
|      | 1) Set DN=12, LED will display                                                      | the real time analog input voltage.      |                                        |  |  |  |  |
|      | 2) Set <b>V0</b> to 0.                                                              |                                          |                                        |  |  |  |  |
|      | 3) Set the voltage of external dev                                                  | vice to zero.                            |                                        |  |  |  |  |
|      | 4) If the value of LED display                                                      | is not zero, set the inverse value to    | V0.(ex: LED display                    |  |  |  |  |
|      | -24, set <b>V0</b> to 24)                                                           |                                          |                                        |  |  |  |  |
|      | 5) SAVE the new value of <b>V0</b> to                                               | EEPROM when need.                        |                                        |  |  |  |  |
|      | VZ                                                                                  | 0~99【0】                                  | 2,3                                    |  |  |  |  |
|      | The Deadzone (inactivity) of A                                                      | nalog Input (Unit: 0.01V)                |                                        |  |  |  |  |
|      | • This parameter is mainly app                                                      | olied in speed/voltage/torque control    | mode( <b>MD</b> =2,3,4), or            |  |  |  |  |
|      | position mode with external anal                                                    | og speed input( <b>MD</b> =0,1).         |                                        |  |  |  |  |
|      |                                                                                     |                                          |                                        |  |  |  |  |
| PN16 | For example:                                                                        |                                          |                                        |  |  |  |  |
|      | If user wants motor to be maintained station state in speed control mode, user mu   |                                          |                                        |  |  |  |  |
|      | zero voltage critically. But it is 1                                                | rather difficult to achieve this event.  | So user could use this                 |  |  |  |  |
|      | parameter to set a deadzone (ina                                                    | activity) of analog input, motor will    | not rotate when input                  |  |  |  |  |
|      | any voltage within the deadzone.                                                    |                                          |                                        |  |  |  |  |
|      |                                                                                     |                                          |                                        |  |  |  |  |
|      | TSC                                                                                 | 1~32 【10】                                | 2,3,4                                  |  |  |  |  |
|      | Torque/Speed Scale                                                                  |                                          |                                        |  |  |  |  |
|      | • In velocity control mode(MD=2), this parameter set the scale between analog input |                                          |                                        |  |  |  |  |
|      | voltage and parameter VM.                                                           |                                          |                                        |  |  |  |  |
| PN17 | • In voltage control mode(MD=3), this parameter set the scale between analog input  |                                          |                                        |  |  |  |  |
|      | voltage and output voltage of driver.                                               |                                          |                                        |  |  |  |  |
|      | • In torque control mode (MD=4), this parameter set the scale between analog input  |                                          |                                        |  |  |  |  |
|      | voltage and output torque of motor.                                                 |                                          |                                        |  |  |  |  |
|      |                                                                                     |                                          |                                        |  |  |  |  |
|      | EP                                                                                  | 1~999【5】                                 | 0,1                                    |  |  |  |  |
|      | In Position Range (Unit: EC)                                                        | In Position Range (Unit: EC)             |                                        |  |  |  |  |
| PN18 | • This parameter decides the                                                        | timing of output <b>POSOK</b> signal.    | When the difference                    |  |  |  |  |
|      | between the command position                                                        | and the actual position is less than the | ne value of <b>EP</b> . driver         |  |  |  |  |
|      | will output the <b>POSOK</b> signal                                                 | · · · · · · · · · · · · · · · · · · ·    | ······································ |  |  |  |  |
|      | 1 <u> </u>                                                                          |                                          |                                        |  |  |  |  |
| PN19 | VF                                                                                  | 1~6000 【4000】                            | Α                                      |  |  |  |  |

|        | Maximum Rotational Speed (U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit: RPM)                              |                        |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|--|--|
|        | • This parameter decides the maximum limit of rotational speed. Please refer to <b>PN08</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                        |  |  |
|        | ★ When detect the rotational speed exceeding VF, alarm "Over Speed" (Err-10) will happen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                        |  |  |
|        | AVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0~32000 【1000】                          | 2,3,4                  |  |  |
| PN20   | • When using external VR(varia by this parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ble resistor), the acceleration of moto | or rotation is decided |  |  |
| PN21   | Reserved by Manufactory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                        |  |  |
| PN22   | Reserved by Manufactory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                        |  |  |
|        | VH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1~5000 【300】                            | 1,5                    |  |  |
| PN23   | <ul> <li>Homing Speed (Unit: RPM)</li> <li>After the user triggers the <u>HOME</u> input pin or executes the instruction H (from hyper terminal), motor will run back to the mechanical home (the <u>HORG</u> input pin) with the speed of VH and exceeding the home. Then, motor run back again to the mechanical home with speed of VH/64 and stop in the mechanical home.</li> </ul>                                                                                                                                                                                                                                                                                                                                    |                                         |                        |  |  |
|        | HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0~65535【0】                              | 1,5                    |  |  |
| PN24   | <ul> <li>After homing, the offset value of the position coordinate</li> <li>HP value x 4 = actual position offset</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                        |  |  |
|        | EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20~4000 【400】                           | Α                      |  |  |
| PN25   | <ul> <li>Position Error Limit (Unit: EC)</li> <li>The follow error of motor means the error between practice position and command position. There are some factors (overloading, parameter setting fault) leading to bad performance and then the following error will become greater. In order to protect the servo system, the driver will be automatically turned to servo off. The fore-mentioned situation is called "Follow Error" (Err-04).</li> <li>For example :</li> <li>When we use the encoder with 500 pulse per count (500*4=2000 EC) and EL=400, we will meet alarm "Follow Error" (Err-04) in the moment of follow error over 400. (In other words, the moment of follow error over 1/5 count )</li> </ul> |                                         |                        |  |  |
| PN/26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50~300 <b>[</b> 550 <b>]</b>            |                        |  |  |
| F IN20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50°500 <b>\</b> 550 <b>\</b>            | A                      |  |  |

|      | Load Limit (Unit: Watt)         • This parameter decides the rated power capacity of motor. If the load applied on motor is large than the rated power capacity, alarm "Over Load" (Err-02) will not happen immediately. The timing of alarm "Over Load" (Err-02) happening is according to the excess and the time.         ※ This parameter is not adjustable, just for view.                                                                                                                                                                               |                                                                                                                                                             |                                                                                   |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| PN27 | <ul> <li>Current Limit (Unit: 0.01 AMP)</li> <li>This parameter decides the maximum limit of peak current. Once the peak current of motor is larger than this value, alarm "Over Current" (Err-03) will immediately occur.</li> <li>X In general, DO NOT change this value to avoid from damaging the driver and motor.</li> <li>X This default value () is different from set to set.(a set here means a motor and a driver)</li> </ul>                                                                                                                      |                                                                                                                                                             |                                                                                   |  |
|      | IL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 【300】                                                                                                                                                       | Α                                                                                 |  |
| PN28 | <ul> <li>Rated Current (Unit: 0.01 AMP)</li> <li>This parameter decides the rated current of motor. If the load applied on motor is large than the rated power capacity, alarm "Over Rated Current" (Err-12) will not happen immediately. The timing of alarm "Over Rated Current" (Err-12) happening is according to the excess and the time.</li> <li>X In general, DO NOT change this value to avoid from damaging the driver and motor.</li> <li>X This default value [] is different from set to set. (a set here means a motor and a driver)</li> </ul> |                                                                                                                                                             |                                                                                   |  |
| PN29 | Reserved by Manufacturer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                   |  |
|      | КР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1~20000 【5000】                                                                                                                                              | All modes                                                                         |  |
| PN30 | <b>Proportional Gain of PID controller</b><br>Please refer to the drawing of P.47.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                                                   |  |
|      | KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1~32000 [0]                                                                                                                                                 | All modes                                                                         |  |
| PN31 | <b>Differential Gain of PID contro</b><br>Please refer to the drawing of P.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ller<br>7.                                                                                                                                                  |                                                                                   |  |
|      | KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0~50 [5]                                                                                                                                                    | Α                                                                                 |  |
| PN32 | <b>Integral Gain of PID controller</b><br>Please refer to the drawing of P.47.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                   |  |
|      | DM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0~99【0】                                                                                                                                                     | Α                                                                                 |  |
| PN33 | <ul> <li>Virtual Damper</li> <li>In order to decrease the overs</li> <li>But decreasing VA will lead to low way to decrease the overshoot by</li> <li>The disadvantage of adding</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   | hoot of PID control, user can decrea<br>ower the performance of servo system<br>r increasing the damper of the system<br>the damper is that the load of mot | ase the <b>VA</b> parameter.<br>n. So we have another<br><br>tor will become more |  |

|       | larger. Please refer to "Servo Tune", P.44.                                                  |                                  |   |  |  |
|-------|----------------------------------------------------------------------------------------------|----------------------------------|---|--|--|
| PN34  | Reserved by Manufacturer                                                                     |                                  |   |  |  |
|       | FFV 0~9999 [3221] A                                                                          |                                  |   |  |  |
| PN35  | Forward Velocity Compensation                                                                |                                  |   |  |  |
| 11135 | Please refer to "Servo Tune", P.48.                                                          |                                  |   |  |  |
|       | X This default value () is different from set to set.(a set here means a motor and a driver) |                                  |   |  |  |
|       | FFB                                                                                          | -99~99【0】                        | Α |  |  |
| PN36  | Unbalance Compensation (gen                                                                  | erally used for Z-axis movement) |   |  |  |
|       | Please refer to "Servo Tune", P.48.                                                          |                                  |   |  |  |
| PN37  | Reserved by Manufacturer                                                                     |                                  |   |  |  |
| PN38  | Reserved by Manufacturer                                                                     |                                  |   |  |  |
| PN39  | Reserved by Manufacturer                                                                     |                                  |   |  |  |

## ALARM

## **Descriptions of Driver Alarms**

- When 7 segment display shows , it means that alarm occurs and the driver cannot be operated.
- Please solve the problem according to the following procedure.

### **Alarm List**

| Display             | Causes                                   | Solutions                                                |
|---------------------|------------------------------------------|----------------------------------------------------------|
|                     | Over Voltage                             | • Use multi-meter to measure whether the                 |
|                     | • The voltage of DC bus is over 360V.    | input voltage is more than the rated                     |
| ╵╠╾╽╾╽╾╏╏╎          | • AC voltage is over 255V.               | voltage.                                                 |
|                     | • The circuit for detecting voltage is   | • Check if the input voltage conforms to                 |
|                     | breakdown.                               | the spec of the driver.                                  |
|                     | Over Load                                | • Extend acceleration and deceleration                   |
|                     | • Overloading, the actual torque         | time, or increase the capacity of motor.                 |
|                     | exceeds rated torque for long time.      | • Adjust the system parameter <b>PN30</b> ( <b>KP</b> )  |
|                     | • The load of the motor exceeds the      | or other gain value.                                     |
| <u>[2 - - 0 2</u> ] | system parameter of PN26 (LL).           | • Decrease the load or increase the power                |
|                     | • The servo system is unstable and       | capacity of motor.                                       |
|                     | vibrates.                                | • Wire the cables correctly according to                 |
|                     | • The wiring of motor and encoder are    | these instructions.                                      |
|                     | wrong.                                   |                                                          |
|                     | Over Current                             | • Adjust the system parameter <b>PN30</b> ( <b>KP</b> ). |
|                     | • The output current from driver         | • Check if U,V,W cable short-circuit and if              |
|                     | exceeds the setting value of parameter   | they are correctly connected.                            |
|                     | PN27 (IL1).                              | • First, disconnect the motor. Second,                   |
|                     | • The output of driver short- circuits   | power on the driver. If the alarm still                  |
|                     | (circuit or IGBT has break down.)        | occurs, replace the driver with another one.             |
|                     | • The relay for dynamic brake has        | • Replace the driver, and DO NOT use the                 |
|                     | been damaged by high temperature.        | SVOFF instruction to stop the motor                      |
|                     | Follow Error                             | • Add up the protect value of parameter                  |
|                     | • The input pulse subtracts encoder      | PN25(EL).                                                |
|                     | feedback pulse exceeds the value of      | • Increase acceleration/deceleration time                |
|                     | PN25(EL) .                               | or reduce load.                                          |
|                     | • Velocity or acceleration command       | • Add up the value of PN30(KP) and                       |
|                     | from the controller is too huge.         | PN31(KI) to speed up the response of                     |
|                     | • The value of parameter <b>PN30(KP)</b> | motors.                                                  |
|                     | is too small.                            | • Check if the motor and driver are                      |
|                     | • The motor did not follow the           | compatible with each other.                              |
|                     | command.                                 |                                                          |

## ALARM

|                             | Encoder Error                             | • Please tighten the connector of the cable          |
|-----------------------------|-------------------------------------------|------------------------------------------------------|
|                             |                                           | between encoder and driver.                          |
|                             | • The encoder breakdown.                  | • Check if there is short circuit between            |
|                             | • The encoder cable has noise.            | the connector of encoder and something.              |
|                             | • The communication between               | • Check if the input power of encoder is             |
|                             | encoder and driver breaks down.           | DC+5V, especially when the encoder cable             |
|                             |                                           | is too long.                                         |
|                             | Under Voltage                             | • Use multimeter to measure if the input             |
|                             | • The input voltage of driver is lower    | • Use multimeter to measure if the input             |
|                             | than AC170V.                              | Check the input valte as of the driver               |
|                             | • DC bus is lower than 240V.              | • Check the input voltage of the driver.             |
|                             | I Trip                                    |                                                      |
|                             |                                           | • Check if U,V,W cable short-circuit and if          |
|                             | • The output of driver short-circuits or  | they are correctly connected.                        |
|                             | breaks down (circuit or IGBT breaks       | • First, disconnect the motor. Second,               |
|                             | down).                                    | power on the driver. If the alarm still              |
|                             | • The relay for dynamic brake is          | occurs, replace the driver with another one.         |
| <u> _        _     </u><br> | damaged by high temperature.              | • Replace the driver. Don't use SVOFF to             |
|                             | • After Err04 occurs, the user still      | stop the operation.                                  |
|                             | input pulse command. In order to          | • Before reset the system, please make               |
|                             | protect the system, the driver will start | sure there is no other pulse command                 |
|                             | I trip.                                   | inputting.                                           |
|                             | V Trip                                    |                                                      |
|                             | <b>X</b>                                  | • Use multi-meter to measure whether the             |
|                             | • The voltage of DC bus is over 360V.     | input voltage is more than the rated                 |
|                             | • Regenerative resistance is broken.      | voltage.                                             |
|                             | • The circuit for detecting voltage is    | • Check if the input voltage conforms to             |
|                             | breakdown.                                | the spec of the driver.                              |
|                             | Over Pulse Rate                           |                                                      |
| 609                         | The input pulse frequency is              | • Please decrease the frequency of input             |
|                             | • The input pulse frequency is over       | pulse which comes from the outer                     |
|                             | 500 KHZ.                                  |                                                      |
| Err 10                      | Over Speed                                | • Increase parameter PN19, or decrease               |
|                             | • The velocity of the motor is over the   | the input pulse frequency that comes from            |
|                             | setting of PN19 (VF).                     | the outer controller.                                |
|                             | ЕМС                                       | • After confirm that there is no other clare         |
|                             |                                           | or warning short-circuit <b>Din22</b> ( <b>FMC</b> ) |
|                             | • The <b>EMC</b> pin has been inputted.   | and DC and then reset the system                     |
|                             |                                           | and <u>DG</u> and then reset the system.             |

## ALARM

| Over Rated Current                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>The output current is over the setting of parameter PN28 (IL2) for a short time.</li> <li>Poor mechanism, which leads to malfunction.</li> <li>The output of driver short-circuits or breaks down (circuit or IGBT breaks down).</li> </ul> | <ul> <li>Set parameter PNII (VA) properly.</li> <li>Check if U, V, W cable short-circuit and if they are correctly connected.</li> <li>First, disconnect the motor. Second, power on the driver. If the alarm still occurs, replace the driver with another one.</li> <li>Check if there is no obstacle in the travel route.</li> </ul> |
| Memory Error                                                                                                                                                                                                                                         | • Please turn off the power and then press                                                                                                                                                                                                                                                                                              |
| The data stored in memory is wrong.                                                                                                                                                                                                                  | ENTER and QUIT key in the front panel<br>at the same time to turn on the power. If<br>the user does it correctly, the 7 segment<br>LED display will show "dF dd".<br>Afterwards, first execute FN09 [Initialize<br>Parameter ] and then execute FN08<br>[Calibrate Current Sensor].                                                     |

X If you sill can't solve the problem, please contact the manufacturer to get further solution.

X DC bus designates high DC voltage circuit in driver used to drive the motor.

#### The Other Alarm

| CW Drive Inhibit<br>(CWHC)   |
|------------------------------|
| CCW Drive Inhibit<br>(CCWHC) |

• These two alarms are triggered by the limit switches which are connect to <u>CWHC</u> and <u>CCWHC</u> pin each other.

#### How to remove alarms

After user removes the causes of the alarm, short-circuit **Pin24** (<u>**RESET**</u>) and <u>**DG**</u> pin of CN1 to execute the system reset. But some alarms can be only removed by re-power on the driver.

• We strongly suggest our user to take the action that re-power on the driver to avoid the harmful action from driver after user removes the causes of the alarm.

• After removing the alarm and before operating, please check the following items.

1) Check whether there is no command send to the driver.

2) Check whether all the alarms have been removed (alarm may be more than one) to avoid damage the driver again.

When Err-07 or Err-03 occurs, be sure to turn off the power and restart the driver

again so that no alarms will occur again.

This chapter is extremely important. In order to make good use the servo system, the user needs to adjust some parameters.

Here we will talk about some important concept about the servo system.

![](_page_44_Picture_2.jpeg)

### The Power Capacity of Servo Motor

Before selecting motor, one should consider the following two factors. (as shown at the bottom)

![](_page_44_Figure_5.jpeg)

the maximum torque of motor  $\geq$  Tma=Ta+TL

the maximum torque of motor  $\geq$  Tmd=Td-TL

#### Continuous Tr must be less than the rated torque of motor

the rated torque of motor  $\geq$  Tr

$$(Tr = \sqrt{\frac{Tma^{\circ} * ta + TL^{\circ} * tc + Tmd^{\circ} * td + TM^{\circ} * ts}{t}})$$

If you meet these two basic factors, the motors can make better use of them. If possible, please select the motors whose power capacity is larger than you had thought so as to make sure the motors are stable when operating.

### **Adjustment of Rotation Acceleration VA (PN11)**

If the user hopes to use the motor with highest efficiency, the user should follow the following instructions and incidentally check whether the capacity of the motor is appropriate or not.

Install the motor on the machine, add load, and set
 VA (PN11) to 1 (minimum),
 KP (PN30) to 1000,
 KI (PN32) to 0.

2) Execute one complete operation (can use the developed program or JGF, JGR instructions). If alarm or Err-04 occurs, please check whether the connection of driver between encoder and motor are well connected or not and increase KP (only increase 100 each time). If KP is in its maximum (20000) but Err-04 still occurs, please increase EL (PN25). If the driver still displays Err-04, the user probably needs to select the motor of lager power capacity.

X If possible, please increase KP first before you increase EL.

3) After the user determines **KP**, and it can operate one complete travel, please switch the monitor parameter to **DN09** to view the peak value of torque (the unit is 0.01kg\*cm), and increase **VA** to execute repeated operation. Remember at the same time to view **DN09**. Once **DN09** is larger than the peak torque, an alarm of **Err-03** would occur. After conducting many tests, the user can decide the maximum acceleration **VA** in normal conditions according to the value of **DN09**.

X Please let the motor operate many times with the chosen VA and don't let the **DN09** get too close to the peak torque of the motor. Otherwise, once the motor is affected by other factors, the driver is likely to give alarms or servo off.

4) After the user chooses the value of VA, please operate the motor repeatedly. If alarm Err-12 occurs after the repeated rotation, it means the long term continuous torque Tr is larger than the rated torque of the motor. The solution is to lower the value of VA. And an alternative way is to change the rated current of the motor—to increase IL2 (PN28). But the second solution is to force the motor to operate with exceeding current. Long term operation may cause high temperature. But if the rotation is not going to last long, it is an alternative.

X Demagnetization will occur if the motor is operating at high temperature, which is a permanent damage to the motor. The manufactory will not be responsible for this operation.

| Torque of each Motor |                       |                      |
|----------------------|-----------------------|----------------------|
| Motor Type           | Rated Torque<br>kg*cm | Max. Torque<br>kg*cm |
| SIA-121              | 3.9                   | 11.7                 |
| SIA-151              | 4.9                   | 14.6                 |
| SIA-351              | 11.4                  | 34.1                 |
| SIA-551              | 17.9                  | 53.6                 |
| SIA-751              | 24.3                  | 73.0                 |

Roughly speaking, the process of adjusting is from VA=1. Increase VA and at the same time don't let the value of **DN09** get too close to the peak torque of the motor. After choosing the most important element—the value of VA, the user can optimize the servo system by following the following instructions in the next step.

### The Purpose of Servo Driver

The purpose of adjusting the servo system is to minimize the level of inaccuracy of the servo motor when operating under instructions and also shorten the time of travel. Doing so needs to adjust gain parameter and compensation parameter. The following drawing of the speed curve and command speed explains the differences before and after adjusting gain parameter and compensation parameter.

![](_page_46_Figure_4.jpeg)

From the above drawing we can know if we don't set gain parameter appropriately, the actual speed is not equilavent to the command speed, so we need to adjust these three parameters — **KP** (**PN30**),**KD**(**PN31**) and **KI**(**PN32**) to achieve the status of following drawing.

![](_page_46_Figure_6.jpeg)

The user also needs to add forward velocity compensation parameter FFV(PN35) to achieve the folloing drawing. (If it is unnecessary, FFV (PN35) and KD (PN31) don't need to be adjusted.)

![](_page_46_Figure_8.jpeg)

## **SERVO TUNING**

### **Gain Parameter**

Gain parameter is an important parameter that affects the performance of servo system. It includes **KP** (**PN30**), **KD** (**PN31**) and **KI** (**PN32**). Because SIDC 650 drivers use the PID control, **KP** means proportion gain and **KD** means differential gain and **KP** means integral gain.

X According to the theory of PID control, user needs to set **KI** and **KP** to eliminate the steady state error.

#### Proportional Gain (KP)

The output of proportion controller is a proportion of position error. The equation is <u>PWp=KP\*FLE</u> PWp= the output of the proportion controller

KP= proportional gain

FLE= position error

Small **KP** value will lengthen the time for positioning, but large **KP** value leads to overshooting and vibrations.

X Exceeding **KP** will cause too many vibrations so that it cannot be used.

#### Differential Gain (KD)

The output of differential controller is a proportion of the alteration of position error.

The equation is PWd=KD\*(dFLE/dt)

PWd= the output of the differential controller

KD= the differential gain

FLE= position error

Increasing **KD** can decrease the overshooting of **KI**. Appropriate value of **KD** can at the same time shorten the time of positioning and decrease overshooting.

X Exceeding KD will lengthen the time for positioning. (Meanwhile inhibits overshooting.)

#### Integral Gain (KI)

The output of proportion controller is a proportion of integral of position error.

The equation is PWi=∫FLEdt\*KI

PWi= the output of integral gain

KI= integral gain

FLE= position error

The main function of integral gain is to eliminate the steady state error. Increasing **KI** can help eliminate the error when positioning but will become more unstable because of integral. If the steady state error is not really important, the user can set **KI** to 0. On the other hand, if steady state error matters, please set **KI** to at least 1.

X Like KP, exceeding KI will cause too many vibrations so that it cannot be used.

### **Compensation Parameter**

Compensation parameter also affects the performance of servo system, including **FFV** (**PN35**), and **FFB** (**PN36**).

#### Forward Velocity Compensation

Many applications in industry such as CNC, the system not only needs to be accurate in positing but also in traveling, which means the Follow Error (FLE) should be as few as possible. The most basic way of minimize FLE is to increase **KP**. As mentioned before, **KP** is in inverse proportion to FLE. If you increase **KP**, FLE will decrease. Please don't set **KP** too large because the system will become unstable.

In fact, it is impossible to solve the problem of Follow Error by using **KP**. Because there must be errors first, then comes following. No error, no rotation for motors. It is impossible to achieve controlling without errors.

In order to reduce FLE and stabilize the system, SIDC 650 not only compensates position errors, but also compensates velocity in advance. This is the function of **FFV** parameter. In general applications, the default value of **FFV** doesn't need to be changed. If the user need to adjust of reset **FFV**, the procedure is as follows:

- 1. Repeat the travel and change the monitor parameter into DN03, and then observe the peak of follow error.
- % The error in forward direction is "+"; the error in backward direction is "-".
- Adjust the value of FFV (PN35) repeatedly, until the 7-segment displays the minimum number of DN03. (Press QUIT in the front panel can update the newest peak)
- 3. If the user need to save the value, please execute SAVE.

#### The Compensation of Unbalance (FFB)

When the servo motor is applied in Z-axis movement, the load of the motor in ascending is larger than the load in descending. As a result, one parameter is hard to give consideration to both two situations. We need another parameter to compensate the unbalance. The function of this parameter is to compensate the fixed load of one direction. The user can adjust or set **FFB** by following the instructions:

- 1. Enter Hyper Terminal Mode (**MD**=5), re-power on the driver.
- Unlock brakes and add load to the motor. Command the motor to ascend a little bit and then stop it. When the motor stops, set KI to 0, and decrease KP adequately. (The purpose of decreasing KP is to emphasize FLE. But the value of KP cannot be too small, or the driver of alarm may occur.)
- 3. Reset **DN=2** to monitor FLE. When monitoring FLE, the user needs to adjust **FFB** and set FLE to 0. After doing so, the **FFB** is optimal right now.
- 4. Restore MD, KP, KI and DN, and execute SAVE. The setting of FFB is done.
- X When the value of **FFB** is negative, the direction of compensation is inverse.

## SERVO TUNING

### The Flow Chart for Parameter Decision

![](_page_49_Figure_2.jpeg)

SIDC 650/850 can use Hyper Terminal to communicate with WINDOWS though RS-232 COM. Users can set parameter and try operating the motor.

### How to Set the Connection

The procedure of connecting to computers is as follows:

- 1)  $\lceil \text{Program Files} \rfloor \rightarrow \lceil \text{Application Utilities} \rfloor$ 
  - $\rightarrow$   $\[ Communication \] \rightarrow \[ Hyper Terminal \] \]$

![](_page_50_Picture_5.jpeg)

2) Name the icon. In the example, we name this SIDC 650.

![](_page_50_Picture_7.jpeg)

3) Please refer to the following picture to set the port.

| 連線到                 | ? 🔀                       |
|---------------------|---------------------------|
| SIDC650             |                           |
| 請輸入要撥號的             | 電話號碼詳細資料:                 |
| 國家(地區)( <u>C</u> ): | <b>~</b>                  |
| 區碼(E):              |                           |
| 電話號碼(P):            |                           |
| 使用連線(N):            | COM1                      |
|                     | TCP/IP (Winsock)<br>確定 取消 |

4) Set the baud rate to 9600, and flow control to hardware.

| COM1 內容     | ? 🛛       |  |
|-------------|-----------|--|
| 連接埠設定       |           |  |
|             |           |  |
| 每秒傳輸位元(B):  | 9600      |  |
| 資料位元(D):    | 8         |  |
| 同位检查/20)。   |           |  |
| 间位被旦([).    | <b></b>   |  |
| 停止位元(3):    | 1         |  |
| 流量控制()):    | 硬體        |  |
|             |           |  |
|             | 還原成預設值(R) |  |
| 確定 取消 套用(鱼) |           |  |
| 確定 取消 套用(A) |           |  |

5) Now turn on the power of SIDC 650/850. If the installment is successful, we can see "Servo On", "System standby".

> Servo On System standby

## Hyper Terminal Commands of

### **SIDC 650/850**

Here we offer some basic commands that users can use to position the motor and control I/O.

#### Command Instruction Chart

| Туре                 | Instruction           | Range of<br>Parameters     | Functions                                                                     |
|----------------------|-----------------------|----------------------------|-------------------------------------------------------------------------------|
|                      | CS 0                  |                            | Redefine the original of coordinates                                          |
|                      | PZ                    |                            | Suspend motor in the halfway of movement                                      |
|                      | REDO                  |                            | Restore to the movement status before PZ                                      |
| Movement             | Н                     |                            | Homing                                                                        |
| Instruction          | MA m                  | $-2^{27} \le m \le 2^{27}$ | Rotate the motor to the position of m×SC1 in absolute coordinates.            |
|                      | MR m                  | -2048≤m≤2047               | The motor rotate with the distance of m×SC1 in relative coordinates.          |
| I/O Control          | SET Po                | 650:0≤o≤5<br>850:0≤o≤2     | Set the output port Po to ON.                                                 |
|                      | CLR Po                | 650:0≤o≤5<br>850:0≤o≤2     | Set the output port Po to OFF.                                                |
| JOG                  | JGF                   |                            | Rotate forward continuously.                                                  |
| Movement             | JGR                   |                            | Rotate backward continuously.                                                 |
| Instruction          | JG0                   |                            | Stop rotations.                                                               |
| System               | RESET                 |                            | Reset the system alarm, restart the motor.                                    |
| System<br>Command    | HOFF                  |                            | SERVO OFF                                                                     |
|                      | Press ESC on keyboard |                            | Emergent SERVO OFF                                                            |
|                      | DF                    |                            | Set all system parameter to default value                                     |
| Parameter<br>Setting | SI                    |                            | Calibrate the current sensors.                                                |
|                      | SAVE                  |                            | Save all system parameter to Flash Rom.                                       |
|                      | SRn=XX                |                            | Instruction: "SR01=2" means PN01=2.<br>Set system parameter. Please see P.28. |